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Summary. The purpose of this review is to summarize
current understanding of the process of maturation in human
brains during the juvenile period and up to young adulthood.
We will describe the methods used in such investigations and
outline the main findings regarding the course of brain
development.

Of course there is much that we do not know about brain
maturation, but there is congruence of evidence indicating that
brain maturation is not complete until young adulthood (about -
age 21). Furthermore, the main index of maturation, which is
rate of myelination, points to large variability in the rate of
maturation among brain regions. In general, maturation of
association cortex is not complete even by late adolescence and
within this cortex the prefrontal regions are last to mature.

The review will conclude by discussing the behavioral
implications of these findings. The role of myelination is to
focus and refine the operation of neural networks regulating
behavior, and the frontal lobes specifically modulate and
inhibit impulses, shaping behavior in accordance with planned
action and long-term goals. Therefore, the brain anatomy data
indicate that people are not biologically prepared to exercise
mature frontal lobe control until they reach adulthood.
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The rate at which the human brain matures has been of considerable interest to
neuroscientists and knowledge on when different brain regions mature in human
development may have profound implications for understanding behavioral developfnent.
Although the brain and its regions become well differentiated during fetal development,
there is overwhelming evidence that much of the brain maturational process occurs after
birth. Indeed, projections from early pioneering work on donated brain tissue have
indicated that some brain regions do not reach maturity in humans until adulthood. These
projections have been confirmed by more recent studies using neuroimaging with
advanced methods for soft tissue segmentation and regional parcellation. Here we will
first describe the initial neuroanatomic methods and results they produced, which gave
rise to hypotheses currently being investigated. We will proceed to explain the novel
methods using structural and functional neuroimaging, and summarize results pertinent to
the issue of brain maturation. We will conclude by an attempt to integrate findings from
the diverse methods and explain their implications to behavior, focusing on issues

pertinent to criminal responsibility.

Initial studies: Post-mortem tissue anatomy

While sophisticated methods for preservation and dissection of post mortem brain tissue
had been developed in the first decades of the twentieth century, it was not until the 1960s
that enough such tissue was available to examine the question of brain maturation in
humans. Arguably the largest collection and the most influential work was that of

Professor Paul I. Yakovlev and his colleagues at Harvard University. His methods,
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findings and conclusions have been summarized in a landmark chapter titled “The
myelination cycles of regional maturation of the brain” co-authord with Dr. André-Roch
Lecours, which was published in a book on Regional Brain Development in Early Life

(edited by Prof. Alexandre Minkowski and published by Blackwell Scientific

Publications, Oxford, England, 1967).

The anatomic work has focused on the process of the creation of fatty tissue surrounding
nerve fibers, which is known as “myelogenesis.” Myelogenesis is important for assuring
efficient transmission of neuronal signals, the fatty tissue called myelin surrounds the
nerve fibers that carry information across large distance very much in the same way that
rubber is used for conducting electricity across distance. The process can be examined by
obtaining slices of brain tissue from a wide age range that were treated in a way that
enables visualization myelin, and comparing its abundance. Such treatment of tissue is
called “staining,” and Yakovlev and his colleagues used a staining method developed in
twenties by Loyez. The method relies on the ability to observe both the density of stained
fibers and the intensity of coloration (light to dark gray and blue to black), and these can
be used to index degree of myelination (see Figure 1).

Yakovlev and his colleagues examined over 200 brains ranging in age from fourth
fetal month to one postnatal year, and another large set of brains from the third decade of
life on. Unfortunately they had very few brains from the first and second decades of life,

and their extrapolations for that phase of development are accordingly more tentative.
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Nonetheless, They were able to extrapolate some principles and propose hypotheses that
were confirmed with remarkable consistency with current techniques.

The main surprise was the much slower progression of the maturational process in
the human brain compared to what had been expected from animal studies. Yakovlev and
his colleagues have carefully charted the maturational process for a large set of regions
and found some that matured very early while others were far from maturation at one year
of age. By extrapolating from the sample of adult brains and the few specimens from the
period in between, they have produced “maturation charts” for these brain regions. Based
on these charts they identified several principles. One of the main principles is illustrated
in Figure 2. The brain can be conceptualized architecturally (and phylogenetically) as
consisting of three “zones”: the median (median thalamus and hypothalamus, septum,
hippocampus) the paramedian (limbic) and the supralimbic (mostly cerebral cortex). They
noted that maturational rate is fastest for the paramedian zone, where it is complete
within the first decade of life, and slowest for the cortical regions where development
seems to extend into adulthood.

This principle has rather profound implications for behavior, and is consistent
with behavioral data on development. The region that is slowest to mature is the part of
the brain that basically modulates more primitive, drive related activation of the limbic
areas. From a phylogenetic perspective, the brain areas that are latest to mature are those
areas that have seen the greatest expansion in humans and are associated with faculties
such as language comprehension and expression, abstraction and reasoning,

comprehension and expression of emotions, impulse control and planning, and aspects of
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attention and memory (including working memory). Thus, the anatomic data as
interpreted by Yakovlev and his colleagues indicated that the very functions that make us
uniquely human are the latest to become fully integrated into the workings of the
developing brain.

Other contributions of anatomic studies for understanding brain development
ranged from gross measurement of brain weight in large samples and more detailed
measurements of synaptic processes in small samples. For example, Dekaban and
.Sadowsky (1978) tabulated body and brain weight in nearly 5000 autopsy reports, ranging
in age from weeks to 90 years, and plotted these values against age. The most important
result from the perspective of this review is that brain weight did not reach its peak until
about age 20, and showed steady decline thereafter (see Figure xx). This method, of
course, could not distinguish myelin from other tissue and hence does not directly
examine maturation.

Using methods for examining synaptic density, Prof. Peter Huttenlocher from the
University of Chicago was able to uncover another neurodevelopmental phenomenon
apparently taking place during adolescence: “pruning.” Specifically, he observed a
decline in the density of synapses between ages 2 and 16 accompanied by a decrease in
neuronal density. His conclusion required a considerable leap of imagination, since he
only had one specimen between the ages of 8 and 20 years, however it made theoretical
sense and was consistent with animal studies. According to the pruning hypothesis, at

some point during adolescence neurons and their connections that have not been
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consistently used during childhood “shrivel off,” thereby allowing greater efficiency of

the remaining neural systems (Huttenlocher, 1978; Huttenlocher et al., 1982).

Current anatomic studies: Structural imaging with MRI.

The post-mortem tissue studies such as conducted by Yakovlev and his colleagues
have contributed important insights into understanding brain maturation, but they have
serious limitations. Most importantly, tissue availability depends on sources that may bias
the age ranges available; the inability to quantify the measures in an automated fashion
limits the number of brains and regions that can be examined; there is large variation
introduced by fixation and staining methods; and it is impossible to do repeated studies in
the same individual to trace developmental changes.

All these difficulties are circumvented by a set of novel techniques developed in
the 1970s and fully implemented by the 1990s, and that can be generally referred to as
“structural imaging”. These methods permit visualization and volumetric measurement of
brain structure in living people without risk. The method that has become state of the art
for these studies is based on magnetic resonance imaging (MRI) procedures. The head is
placed in a strong magnetic field (current standard is at 1.5 tesla), and the image is based
on recording the resonance of molecules after perturbations with radiofrequency (RF)
signals. Recordings are made with antennae, very much like recording of
radiofrequencies. What makes MRI particularly amenable for quantitative analysis is that
different echo times can highlight different soft tissue contrasts, which have effects

similar to those of staining in post mortem studies. The main potential drawback, hazard
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and source of error in MRI is the difficulty of maintaining a homogeneous field strength
throughout the image brain. Inhomogeneity will produce “shading” effects, which can be
sometimes compensated for by the clinician but has to be minimized or compensated for
by complex statistical operation when trying to implement a computer algorithm to
identify the tissue. Several approaches have been developed in the early 90s, and these
have now become standard and have been shown to produce reliable results both in
phantom and in human studies (e.g., Filipek, Richelme, Kennedy, and Caviness, 1994;
Kohn et al, 1991; Yan and Karp 1994). These methods have provided data on the
intracranial composition of the three main brain compartments related to cytoarchitecture
and connectivity: gray matter (GM) - the somatodendritic tissue of neurons (cortical and
deep), white matter (WM) - the axonal compartment of myelinated connecting fibers, and
cerebrospinal fluid (CSF). An example of computerized segmentation of MRI into these
compartments is provided in Figure 3.

It has taken some time to apply these segmentation methods to a sufficiently large
sample of healthy people across the age range so as to examine maturational processes.
However, several groups have made considerable progress and the results of their efforts,
while still tentative with regard to precise charting of developmental trajectories for all
brain regions and for all age groups, are nonetheless quite consistent with the post
mortem findings and converge to support several conclusions.

Of the by now considerable number of manuscripts in the referenced literature one
can identify seven rx;lain groups that pursued issues related to neurodevelopment: 1. The

Harvard group under the leadership of Kennedy and Cavines; 2. The NIH group under the
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leadership of Dr. Rapoport and Giedd; 3. The Stanford group under the leadership of Dr.
Pfefferbaum; 4. The Hopkins group led by Dr. Denckla; 5. The UCSD group led by Dr.
Jernigan; 6. The University of Utah group led by Dr. Bigler; 7. The Penn group led by
myself and Dr. Raquel E. Gur. Contributions from other centers such as Duke, McGill,
NYU, UCLA and Toyama University in Japan have also been instrumental but they have
mainly used data from the aforementioned groups or did not specifically focus on the
period of early development.

In one of the first studies examining segmented MRI in children and adult,
Jernigan and Tallal (1990) have documented the “pruning” process proposed by
Huttenlocher’s work. They found that children had higher gray matter volumes than
adults, indicating loss of GM during adolescence. These results have been replicated
more recently by this group using advanced methods for image analysis (Sowell et al.,
1999), and demonstrating that the pruning seems most “aggressive” in prefrontal and
temporo-parietal cortical brain regions.

The NIH group published a landmark paper in 1996, where they have reported
results of brain volumetric MRI study on 104 healthy children ranging in age from 4-18.
While they did not segment the MRI data intd compartments, they were able to document
developmental changes that clearly indicated prolonged maturation beyond age 17. In a
later report on this sample, when segmentation algorithms have been applied, they were
able to pinpoint the greatest delay in myelination, defined as WM volume, for fronto-
temporal pathways (Paus et al., 1999). This finding is very consistent with Yakovlev’s

results. This group went on to exploit the ability with MRI to obtain repeated measures on
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the same individuals. Using such longitudinal data they were able to document pre-
adolescent increase in GM that precipitated the pruning process of adolescence. At the
same time, the volume of WM continued to show increase up to age 22 years (Giedd et
al., 1999).

The Harvard group developed a sophisticated procedure for MRI analysis (Filipek
et al., 1994), which they applied to a sample of children with the age range of 7-11 years
and compared to adults (Cavines et al., 1996). They found sex differences suggesting
earlier maturation of females, and generally supported the role of white matter as an index
of maturation that shows delay in reaching its peak volume until early adulthood.

Another landmark study was published by the Stanford group, which examined
segmented MRI on a “retrospective” sample of 88 participants ranging in age from 3
months to 30 years and a “prospective” sample of 73 healthy men aged 21 to 70 years
(Pfefferbaum et al., 1994). The retrospective sample used scans available from the
clinical case load, although images were carefully selected to include only those with a
negative clinical reading, while the prospective sample was studied specifically for
research and recruited to be healthy. The results demonstrated very clear
neurodevelopmental course for GM and WM, with the former showing a steady decline
during adolescence while the latter shows increased volume until about age 20-22 years
(see Figure xx).

The Hopkins group used a similar approach in a sample of 85 healthy children and
adolescents ranging in age from 5to 17 years (Reiss et al., 1996). Consistent with the post

mortem and the other volumetric MRI studies, they reported steady increase in WM
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volume with age that did not seem to peak by age 17. Unfortunately, they did not have
data on older individuals (Figure xx). Their results are consistent with those of Blatter et
al. (1995) from Utah, although the extensive Utah database combines ages 16-25 and
therefore does not permit evaluation of changes during late adolescence and early
adulthood.

In the only study to date that has examined segmented MRI volumes from a
prospective sample of 28 healthy children aged 1 month to 10 years, as well as a small
adult sample, Matsuzawa et al (2001) have applied the segmentation procedures
developed by the Penn group. They have demonstrated increased volume of both GM and
WM in the first postnatal months, but whereas GM volume peaked at about two years of
age, the volume of WM, which indicates brain maturation, continued to increase into
adulthood (Figure xx). Furthermore, consistent with the post mortem and other MRI
studies that have examined this issue, the frontal lobe showed the greatest maturational
lag and is unlikely completed before young adulthood.

While not directly examining adolescence, several studies of aging may also help
shed light on development. The reason is that a rather ubiquitous neurodevelopmental
principle states that whatever “comes on board” last is also first to deteriorate with older
age. In this regard, several studies have suggested that frontal and temporal cortex shows
the most pronounced age-associated decline, and that this happens earlier for men than
for women (e.g., Coffee et al., 1998; Cowell et al., 1994; Gur et al., 1991, 2002; Raz et
al., 1997). The possibility of further maturation occurring beyond age 17 is supported in a

recent study examining age effects for a prospective sample of 116 healthy adults (57
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men and 59 women, age range 18-49). As can be seen in Figure xx, volume of WB
showed a positive slope for that age range (Gur et al., 2002). To examine in more detail
any effects in young adulthood, defined as between the ages of 18 to 25 (and on which
there 1s probably the least amount of published data), we have selected all individuals in
this age range from that study. As can be seen in Figure xx, there is clear evidence that

the maturation process, reflected in WM volume, continues into the early 20s, especially

for men.

Physiologic studies: Functional imaging

Information on the maturational process can come not only from anatomic studies
of brain structure, the focus of this review, but also from studies of brain activity or
“function”. Few studies have been done to examine brain maturation. Probably the main
reason for the paucity of studies is that many of these methods necessitate exposure to
ionizing radiation, and therefore are forbidden in healthy children. Another reason is that
these studies are expensive and are usually done in very small samples. Nonetheless,
several investigators have examined indices of brain maturation using functional imaging
(e.g., Chugani et al., 1987; Chiron et al., 1992). These studies concur with the anatomic
data. Thus, Chugani et al show that adult values are not reached by age 15 and are

delayed in association cortex, while Chiron et al suggest that adult values are reached by

about age 20.

Summary and conclusions
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The review of neuroanatomic studies across methods and approaches, and the few
neurophysiologic studies in humans, indicates considerable convergence of findings with
respect to brain maturation during childhood, adolescence and early adulthood. The
overwhelming conclusion is that the main index of maturation, which is the process
called “myelination,” is not complete until some time in the beginning of the third decade
of life (probably at around age 20-22). Other maturational processes, such as the increase
and subsequent elimination (“pruning”) in cell number and connectivity may be
completed by late adolescence, perhaps by age 15-17. More data are needed to pinpoint
the age at which these maturational processes are complete.

These results have rather profound implications for understanding behavioral
development. The cortical regions, particularly those in prefrontal areas, are involved in
behavioral facets germane to many aspect of criminal culpability. Perhaps most relevant
is the involvement of these brain regions in the control of aggression and other impulses,
the process of planning for long-range goals, organization of sequential behavior, the
process of abstraction and mental flexibility, and aspects of memory including “working
memory.” If the neural substrates of these behaviors have not reached maturity before
adulthood, it is unreasonable to expect the behaviors themselves to reflect mature thought

Processes.
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